miR-584 and miR-146 are candidate biomarkers for acute respiratory distress syndrome

SIQUAN ZHANG1*, YINUO HONG2*, HUAFENG LIU1, QIANPENG WANG2, JUAN XU2, YUJUAN ZHANG1, XI ZHAO1, YAN YAO1, KEXING ZHOU1 and XIANFENG DING2

1Intensive Care Unit, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023; 2College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China

Received May 10, 2020; Accepted October 6, 2020

DOI: 10.3892/etm.2021.9873

Abstract. MicroRNAs (miRNAs/miRs) have important roles in inflammation and infections, which are common manifestations of acute respiratory distress syndrome (ARDS). The present study aimed to assess whether serum miRNAs are potential diagnostic biomarkers for human ARDS. For this, two sets of serum samples from healthy individuals and patients with ARDS were analysed by high-throughput sequencing to identify differentially expressed genes in ARDS. A total of 679 valid sequences were identified as differentially expressed (P<0.05). Of these, five differentially expressed miRNAs were subjected to reverse transcription‑quantitative PCR validation. Finally, two miRNAs (miR‑584 and miR‑146a) were successfully verified. These two miRNAs were significantly downregulated in the serum of patients with ARDS. Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that their target transcripts were implicated in a broad range of biological processes and various metabolic pathways, including involvement in the regulation of various inflammatory factors. The present study provided a framework for understanding the molecular mechanisms of ARDS and suggested that miR‑584 and miR‑146a are associated with ARDS and may be potential therapeutic targets.

Introduction

Acute respiratory distress syndrome (ARDS) is a severe respiratory disease that results in low oxygen levels in the blood and multiple organ failure (1). Its clinical symptoms include diffuse alveolar injury, oedema, bleeding, the formation of a transparent membrane and polymorphonuclear neutrophil infiltration (2,3). The outcome and risk of ARDS may be influenced by multiple factors and thus, it is difficult to explain the risk and outcome of ARDS with only one clinical factor (4). Furthermore, the characteristics and outcome of ARDS may change over time (5). This means that although individuals are exposed to similar environmental factors, they have different risks of morbidity and survival rates. Depending on these factors, the mortality rate of patients with ARDS is 30‑40% (6). It has been speculated that the genome may play an important role in the ARDS (4).

MicroRNAs (miRNAs/miRs) are 21‑24 nt duplex RNAs and one miRNA may regulate hundreds of targets (7). Most of the human genome was predicted to be regulated by miRNAs and multiple miRNAs may act cooperatively to silence the same target gene (8). They have important roles in the regulation of post‑transcriptional gene expression. Mature miRNAs bind to the 3'‑untranslated region of their target gene to control gene expression, resulting in either reduced protein translation or degradation of mRNA (9). With the advances in the current understanding of the genome, miRNAs have been indicated to have an important role in the regulation of numerous biological processes (10). Dysregulation of miRNAs has been identified in various diseases, such as lung cancer (11). In addition, differentially expressed miRNAs are thought to have distinct regulatory roles in biological processes (12). miRNAs, which are non‑coding RNA molecules that regulate gene expression at the post‑transcriptional level, have emerged as a novel class of gene expression modulators and certain miRNAs have important roles in inflammation and apoptosis, which are common manifestations of ARDS and diffuse alveolar damage (13).

Progress has been made in the study of lung disease on a genome‑wide scale and numerous miRNAs have been indicated to be expressed in the lungs (4,14,15). For instance, Yuan et al (16) inhibited neutrophilic inflammation by silencing triggering receptor expressed on myeloid cells (TREM‑1)
with a nanomicellar approach, suggesting that TREM-1 is a potential therapeutic target for neutrophilic lung inflammation and ARDS. However, studies reporting on the discovery of candidate genes are difficult to replicate due to small sample sizes, population stratification, variability of the control populations or heterogeneity of the ARDS phenotype (4). Thus, the progress of research into biomarkers for ARDS is very slow. However, at the same time, it has been demonstrated that numerous miRNAs are expressed specifically in ARDS compared with normal lung tissue in rat model studies (17,18). For instance, after trauma/transfusion or the physiological remission of ARDS, miR-223 expression increased in the lungs of methyltetradecanoic acid-induced mice or patients with ARDS (19). miR-181a and miR-92a are risk-associated biomarkers for ARDS, whereas miR-424 is a protective biomarker (20). Liu et al (21) indicated that upregulation of miRNA-200c-3p reduced the levels of angiotensin-converting enzyme 2, which has a crucial role in the occurrence and development of ARDS.

High-throughput sequencing technology has made it possible to sequence full human genomes and enhance the understanding of genetic effects on diseases, treatment outcomes and public health (22). In the present study, high-throughput sequencing was used to identify differentially expressed miRNAs in the serum of patients with ARDS and reverse transcription-quantitative (RT-q)PCR verification indicated that miR-584 and miR-146a may have important roles in ARDS. miR-122 may have a key role in the progression of ARDS from initiation to death. These genes may be potential targets for the treatment of ARDS.

Materials and methods

Clinical samples. Serum samples of patients with ARDS (age range, 23-85; average age, 63 years; sex ratio, 8:13) and healthy subjects (age range, 27-69; average age, 45 years; sex ratio, 9:11) were collected from December 2013 to February 2016, at Xixi Hospital (Hangzhou, China). Healthy samples underwent routine medical examinations at Xixi Hospital. All patients with ARDS met the Berlin diagnostic definition (23): The time of ARDS from initiation to death. These genes may be potential targets for the treatment of ARDS.

Materials and methods

Clinical samples. Serum samples of patients with ARDS (age range, 23-85; average age, 63 years; sex ratio, 8:13) and healthy subjects (age range, 27-69; average age, 45 years; sex ratio, 9:11) were collected from December 2013 to February 2016, at Xixi Hospital (Hangzhou, China). Healthy samples underwent routine medical examinations at Xixi Hospital. All patients with ARDS met the Berlin diagnostic definition (23): The time of ARDS from initiation to death. These genes may be potential targets for the treatment of ARDS.

High-throughput sequencing data analysis. To obtain the clean sequence, ACAT101-miR v4.2 (LC Sciences) was used to remove the 3’adaptor and low-quality sequences. From the remaining sequences, 15 to 27 bp sequences, which were most likely to contain mature miRNAs, were retained for further analysis. miRNA sequences were filtered out and clean data were obtained by comparisons with RFam (http://rfam.janelia.org), Repbase (http://www.girinst.org/repbase) and mRNAbase (ftp://ftp.ensembl.org/pub/release-90/fastastidiaspiens/). After comparison with mRNABase (ftp://mirbase.org/pub/mirbase/CURRENT/), the reads were divided into 4 groups as the follows: ‘Group (g)’-reads mapped to pre-miRNAs in miRBase and the pre-miRNAs further mapped to the genome and expressed sequence tag; ‘gp2’-the mapped pre-miRNAs did not map to the genome, but the reads (and the miRNAs of the pre-miRNAs) mapped to the genome; ‘gp3’-reads mapped to selected miRNAs/pre-miRNAs in miRBase, but the mapped pre-miRNAs and the reads did not map to the genome; and ‘gp4’-reads did not map to selected pre-miRNAs in miRBase, but the reads mapped to the genome and the extended genome sequences in the genome may form hairpins.

After screening for valid sequences, the expression profiles of these sequences were normalized. Valid sequences were identified in all samples and a reference frame, which consists of the median of the copy number of the relevant valid sequence in all samples, was established. Subsequently, the data of all samples and reference frame data pairs were log2 transformed. The sum of the log2-transformed data between each respective sample and the reference dataset was calculated and sequences with l|log2|<2 were selected. Next, a linear regression analysis of the reference set was performed between samples and subsets to derive the linear formula y=a*x+b, where a and b are the slope and intercept, respectively. For the resulting line, x is the log2 of the reference dataset and

Y = x + b

where Y is the log2 of the reference dataset
y is the expected value log2 of sample i on a corresponding sequence. The median value of the reference frame, xmid, was then calculated as xmid=[max(x)-min(x)]/2. The log2 of the relevant sample i was calculated as y_i, mid=a_i x_mid + b_i, such that y_r, mid=x_mid and \Delta y_i=y_r, mid-y_i, mid, which is the logarithmic correction factor of sample i. The correction factor algorithm for sample i f_i=2^{\Delta y_i} was then obtained. The number of copies for each sample was obtained by multiplying the original copy number with the algorithm correction factor f_i.

RT-qPCR. Candidate miRNA selection was based on the following criterion: Fold-change >2 after data normalization. Patients were divided into the disease group (n=8) and the death group (n=10) according to whether the final clinical symptoms were improved or the patient died, and three patients were transferred to a different hospital according to their families' wishes, so they were not included in the disease group or death group. A total of five randomly selected miRNAs were validated by RT-qPCR. The stem-loop

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Clinical diagnosis</th>
<th>Oxygenation index (mmHg)</th>
<th>Clinical outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^</td>
<td>32</td>
<td>Male</td>
<td>Severe measles, severe pneumonia, type I respiratory failure, hepatitis B, hypernatremia.</td>
<td>222</td>
<td>Death</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>Male</td>
<td>Measles complicated with pneumonia, respiratory failure, intestinal obstruction.</td>
<td>208</td>
<td>Improvement</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>Male</td>
<td>Pulmonary infection, respiratory failure type I, cholestatic hepatitis, parapneumonia, hypoproteinemia.</td>
<td>161</td>
<td>Improvement</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>Male</td>
<td>PCP, pulmonary edema, liver dysfunction.</td>
<td>85</td>
<td>Death</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>Male</td>
<td>Chronic renal failure, pulmonary infection, liver cancer after interventional therapy, diabetes mellitus type II, hypertension.</td>
<td>172</td>
<td>Improvement</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>Male</td>
<td>Posthepatitic cirrhosis, septic shock, hepatic encephalopathy.</td>
<td>190</td>
<td>Death</td>
</tr>
<tr>
<td>7^</td>
<td>72</td>
<td>Male</td>
<td>Sepsis, septic shock, severe pulmonary infection, pleural effusion, occupation of left liver space.</td>
<td>116</td>
<td>Improvement</td>
</tr>
<tr>
<td>8</td>
<td>83</td>
<td>Male</td>
<td>Cerebral infarction, pulmonary infection, respiratory failure type I, septic shock, senile dementia, myocardial infarction, renal failure.</td>
<td>125</td>
<td>Death</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>Female</td>
<td>Severe pneumonia, respiratory failure.</td>
<td>129</td>
<td>Transfer^b</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>Female</td>
<td>Pneumonia, respiratory failure, diabetes mellitus type II.</td>
<td>180</td>
<td>Improvement</td>
</tr>
<tr>
<td>11</td>
<td>56</td>
<td>Female</td>
<td>H7N9, severe pneumonia, respiratory failure.</td>
<td>136</td>
<td>Death</td>
</tr>
<tr>
<td>12^</td>
<td>63</td>
<td>Female</td>
<td>H1N1, pneumonia, post-operative thyroid cancer, diabetes mellitus type II.</td>
<td>193</td>
<td>Improvement</td>
</tr>
<tr>
<td>13</td>
<td>69</td>
<td>Female</td>
<td>Respiratory failure type I, severe measles, chronic renal failure.</td>
<td>153</td>
<td>Death</td>
</tr>
<tr>
<td>14^</td>
<td>71</td>
<td>Female</td>
<td>H7N9, respiratory failure, apoplexy.</td>
<td>140</td>
<td>Death</td>
</tr>
<tr>
<td>15</td>
<td>74</td>
<td>Female</td>
<td>Right inguinal hernia, intestinal obstruction, septic shock, cardiac arrest, aspiration pneumonia.</td>
<td>56</td>
<td>Death</td>
</tr>
<tr>
<td>16</td>
<td>76</td>
<td>Female</td>
<td>Pulmonary infection, septic shock, respiratory failure, senile emphysema, coronary heart disease.</td>
<td>198</td>
<td>Improvement</td>
</tr>
<tr>
<td>17</td>
<td>79</td>
<td>Female</td>
<td>Renal failure, heart failure, pulmonary infection, respiratory failure.</td>
<td>88</td>
<td>Death</td>
</tr>
<tr>
<td>19^</td>
<td>81</td>
<td>Female</td>
<td>Community-acquired, respiratory failure type I, hypertension, post-operative appendicitis.</td>
<td>58</td>
<td>Death</td>
</tr>
<tr>
<td>20</td>
<td>84</td>
<td>Female</td>
<td>Hypertension, respiratory failure, sepsis, septic shock, severe pulmonary infection.</td>
<td>76</td>
<td>Transfer^b</td>
</tr>
<tr>
<td>21</td>
<td>85</td>
<td>Female</td>
<td>Pulmonary edema, stroke, liver cirrhosis, respiratory failure.</td>
<td>103</td>
<td>Transfer^b</td>
</tr>
</tbody>
</table>

\^Samples selected for sequencing. \^Patient was transferred to a different hospital according to their families' wishes. All patients were treated with pressure control ventilation.
primers used for RT of miRNAs (http://primer3.ut.ee/) are listed in Table II. Complementary DNA was synthesized using M-MLV(H-) Reverse Transcriptase obtained from Vazyme Biotechnology. M-MLV(H-) Reverse Transcriptase (Vazyme Biotech), 5x RT Buffer (Vazyme Biotech), dNTP Mixture (Vazyme Biotech), primer (Sangon Biotech), RNase Inhibitor (Vazyme Biotech) and ddH$_2$O are included in the reverse transcription reaction system. The temperature protocol for reverse transcription was as follows: 45 min at 42˚C, 5 min at 85˚C. The reaction was carried out in a PCR instrument (cat. no. T1000; Bio‑Rad Laboratories, Inc.). qPCR was performed with SYBR Green qPCR (Toyobo) according to the manufacturer's protocol. The composition of this reaction mixture included the primers (Sangon Biotech), SYBR Green qPCR Mix (Toyobo) and ddH$_2$O. The temperature protocol for reverse transcription was as follows: Initial denaturation 95˚C for 30 sec, followed by 40 cycles of 95˚C for 10 sec and 60˚C for 30 sec. The reaction was carried out in a qPCR instrument (7500; Applied Biosystems; Thermo Fisher Scientific, Inc.). 5S ribosomal RNA was used as an internal control. Relative mRNA expression of each gene compared to 5S ribosomal RNA was calculated using the $2^{-\Delta\Delta Cq}$ method (24). The primer information of miRNAs for qPCR is provided in Table III. All miRNAs had the same stem-loop sequence. The reverse primer used for qPCR was designed based on the stem-loop sequence and thus, it was a universal reverse primer.

miRNA and mRNA co-expression network. Based on the results of the sequence analysis, the following five miRNAs with the largest difference in expression levels were obtained: miR-584, miR-451, miR-146a, miR-193a and miR-122. miRDB (http://mirdb.org), miRWalk (http://mirwalk.umm.uni-heidelberg.de) and TargetScan 7.0 (http://www.targetscan.org/vert_72/) were used for target gene prediction.

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. GO annotations of target genes corresponding to differentially expressed miRNAs were performed with the WEB-based GEne SeT AnaLysis Toolkit (http://www.webgestalt.org/option.php). KEGG pathways were analysed through KEGG Mapper (https://www.kegg.jp/kegg/mapper.html) to identify the significant pathways of the differentially expressed genes. GO terms and KEGG pathways with a corrected P-value <0.05, which was calculated by the hypergeometric test, were considered to be significantly enriched. Furthermore, -log10(P) was used to determine the enrichment of each GO term by the differentially expressed genes and the significance of the pathway associations.

Statistical analysis. All statistical analyses were conducted with SPSS (20.0 IBM Corp.). Statistical comparisons of the sequencing data were performed using Student's t-test. ANOVA was used for comparisons between multiple groups, followed by the Least-Significant Difference test. P<0.05 was considered to indicate a statistically significant difference.

Results

Processing of raw miRNA high-throughput sequencing data. A total of 1.8x107 raw-sequence reads from the serum of patients with ARDS and 1.9x107 raw-sequence reads from the serum of healthy subjects were obtained. In the filtering
A total of 679 miRNAs were identified to be differentially expressed between the ARDS and healthy samples. Of the 679 miRNAs, 537 miRNAs belonged to the category gp1, 17 miRNAs to gp2, 24 miRNAs to gp3 and 101 miRNAs to gp4. In gp1 and gp2, 112 miRNAs were selected according to the screening conditions fold-change >2 and P<0.05. A total of 55 miRNAs were upregulated, while 57 miRNAs were downregulated. In the volcano plot analysis of the differentially expressed miRNAs, the ARDS group was successfully separated from the normal group (Fig. 1A). The top 5 differentially expressed miRNAs are presented in a heat map in Fig. 1B. miR-584, miR-451, miR-146a and miR-193a were the most downregulated miRNAs, while miR-122 was the most upregulated.

Validation of differentially expressed miRNAs in ARDS and healthy serum by RT-qPCR. To confirm the previous results and identify the functions of miRNAs in ARDS, five randomly selected miRNAs (Table IV), including three downregulated miRNAs, *Homo sapiens* (hsa)-miR-584, hsa-miR-451 and hsa-miR-146a, and two upregulated miRNAs, hsa-miR-193a and hsa-miR-122, were validated by RT-qPCR (Fig. 2). The results were similar to those of the high-throughput sequencing. High-throughput sequencing and RT-qPCR demonstrated downregulated expression of hsa-miR-584 and hsa-miR-146a and upregulated expression of hsa-miR-122 in the disease vs. healthy group (Fig. 2A). However, in the death vs. healthy group, miR-122 was downregulated (Fig. 2B). In the comparison of the death vs. healthy group, only the results of hsa-miR-584 and hsa-miR-146a were similar to those of the high-throughput sequencing (Fig. 2C). Reduced differences for sequencing, the samples were pooled in the sequencing analysis, mixing patients from the disease and death groups; thus, the sequencing results did not reflect the differences between the disease group and the death group.

GO analysis. GO enrichment analysis of significantly differentially expressed mRNAs was performed to determine the effects of these miRNAs. The WEB-based GENe SeT AnaLysis Toolkit (webgestalt; http://www.webgestalt.org/option.php) was used to annotate the potential biological functions and signalling pathways of the target genes. GO categories of ‘biological process’ (BP), ‘cellular component’ (CC) and ‘molecular function’ (MF) were analysed to determine gene functions and gene product enrichment. The results of the GO enrichment analysis are presented in Fig. 4. The analysis revealed that the majority of the BP terms associated with both miR-146a (Fig. 4A) and miR-584 (Fig. 4B) were involved in the processes of cell life activity and composition, such as ‘biological regulation’, ‘metabolic process’, ‘multicellular organismal process’ and ‘cellular component organization’. In the category CC, the terms of the target mRNAs of miR-146a and miR-584 included ‘nucleus’, ‘membrane’ and ‘macromolecular complex’. In the MF category, the target mRNAs were enriched in terms associated with binding activities, including ‘protein binding’, ‘ion binding’ and ‘nucleic acid binding’.

KEGG analysis. The results of the KEGG pathway enrichment analysis of target mRNAs are presented in Fig. 5 and pathways with P<0.05 were selected to draw a bubble diagram. These results demonstrated that the target mRNAs of hsa-miRNA-584 may be involved in ‘ubiquitin-mediated

Figure 1. Analysis of differentially expressed miRNAs. (A) Volcano plot indicating the differentially expressed miRNAs. Blue dots represent significantly upregulated miRNAs, green dots represent significantly downregulated miRNAs and black points represent miRNAs that were not significantly different between the ARDS and healthy groups. The two vertical lines indicate the filtering standard of fold-change ≥2. (B) Clustering analysis of differences in serum levels of miRNAs between the ARDS and healthy groups. In the heat map, the highly upregulated genes are indicated in red the downregulated genes are displayed in green. Because the samples for each group were pooled, there is only one entry for each group. miRNA/miR, microRNA; ARDS, acute respiratory distress syndrome; hsa, *Homo sapiens*.
proteolysis’, ‘sulfur metabolism’, ‘retrograde endocannabinoid signaling’ and ‘regulation of actin cytoskeleton’ (Fig. 5A). In addition, ‘tuberculosis’, ‘toxoplasmosis’, ‘Toll‑like receptor (TLR) signaling pathway’ and ‘NF‑κB signaling pathway’ were associated with the target mRNAs of hsa‑miR‑146a (Fig. 5B).

MAPK cascade activation is the hub of multiple signalling pathways and NF‑κB is one of the downstream effectors of the MAPK signalling pathway (25). Thus, further analysis focused on the MAPK signaling pathway. According to the KEGG prediction, glial cell line‑derived neurotrophic factor (GDNF), which is a target gene of miR‑146a, and RAB23, which belongs to the RAS family and is a target gene of miR‑584, are involved in the MAPK signalling pathway, which is an inflammation‑associated signalling pathway (26) (Fig. 5C).

Discussion

At present, no sensitive or specific biomarker for the early diagnosis and treatment of ARDS is available. Considering the high risk of death with ARDS, particularly in children (27), further investigations into the molecular mechanisms of ARDS are crucial to improve the survival rate. ARDS is a multifactorial syndrome with high morbidity and mortality rates, despite an enhanced understanding of ARDS pathogenesis, the capacity to predict the development of ARDS remains limited (28). miRNAs have emerged as critical molecules in human diseases (13,29-31). However, a limited number of studies on miRNAs associated with the pathogenesis and progression of ARDS have been published.

In the present study, using high‑throughput sequencing technology, a preliminary molecular analysis of miRNAs and mRNAs in ARDS was performed to facilitate further studies on the pathogenesis of ARDS and to explore whether the pathology of ARDS may be induced by novel miRNAs. In addition, GO and KEGG pathway enrichment analyses were performed to identify the potential functions of differentially expressed miRNAs.

Comparison of the expression profiles of miRNAs in ARDS and healthy samples provided 679 differentially expressed miRNAs. The most upregulated or downregulated miRNAs may help identify molecular markers for the early diagnosis of ARDS. A total of five miRNAs were randomly selected for RT‑qPCR validation and the results of only 3 miRNAs were consistent with the sequencing analysis. This may be because a pooled sample strategy was adopted during sequencing, while in the RT‑qPCR analysis, a more detailed grouping was performed. After excluding the difference between the disease group and the death group, the sequencing results were still reliable.

GO enrichment analysis was used to identify the functions of the miRNAs through the expression patterns of their target mRNAs. Among the target mRNAs of miR‑146a and miR‑584, most of the BP terms were associated with cell activity and composition. Alveolar macrophages and alveolar epithelial cells are the first line of host defence and innate immunity (32). In addition, regulating the function of macrophages and monocytes may be a promising therapeutic strategy against ALI/ARDS (33). This evidence may indicate that the differentially expressed miRNAs are associated with the activities and functions of these immune cells.

The enriched CC terms were associated with the nucleus and membrane, which are key organelles for biological regulation, protein formation and secretion. As discussed above, macrophages are important in ARDS, both in terms of pro-inflammatory and anti-inflammatory activities (34). In addition, NF‑κB is a key transcription factor in the regulation of the innate immune inflammatory response in activated macrophages (35). Activation of the NF‑κB signalling pathway

Table IV. Details of the 5 randomly selected miRNAs for reverse transcription‑quantitative PCR confirmation.

<table>
<thead>
<tr>
<th>miRNA name</th>
<th>P‑value</th>
<th>Fold-change</th>
<th>Direction of regulation</th>
<th>Chromosome</th>
<th>Strand</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa‑miR‑584</td>
<td>1.93x10⁻²³</td>
<td>0.29</td>
<td>Down</td>
<td>Chr5</td>
<td>-</td>
<td>Middle</td>
</tr>
<tr>
<td>hsa‑miR‑451a</td>
<td>3.36x10⁻⁴⁴</td>
<td>0.49</td>
<td>Down</td>
<td>Chr17</td>
<td>-</td>
<td>High</td>
</tr>
<tr>
<td>hsa‑miR‑146a</td>
<td>4.86x10⁻⁸³</td>
<td>0.45</td>
<td>Down</td>
<td>Chr5</td>
<td>+</td>
<td>High</td>
</tr>
<tr>
<td>hsa‑miR‑193a</td>
<td>2.85x10⁻¹⁰</td>
<td>3.29</td>
<td>Up</td>
<td>Chr17</td>
<td>+</td>
<td>Middle</td>
</tr>
<tr>
<td>hsa‑miR‑122</td>
<td>2.94x10⁻²⁶</td>
<td>8.32</td>
<td>Up</td>
<td>Chr18</td>
<td>+</td>
<td>High</td>
</tr>
</tbody>
</table>

miR/miRNA, microRNA; hsa, Homo sapiens; Chr, chromosome; + strand, sense strand; - strand, antisense strand.
requires extracellular factors to stimulate receptors on the cell membrane and free NF-κB is required to enter the nucleus to initiate transcription (36). Members of the IL-1 family are key determinants of inflammation. They mainly participate in the inflammatory response through membrane processes, including direct plasma membrane translocation, lysosome
exocytosis, exosome formation, membrane vesiculation, autophagy and pyroptosis (37).

The MF terms were associated with protein binding and ion binding. After the NF-κB signalling pathway is activated, NF-κB binds to multiple proteins or factors to mediate its effector functions (38). In addition, numerous studies have indicated that zinc modulates the NF-κB pathway (39). This is consistent with the results of the GO enrichment analysis in the present study.

KEGG pathway enrichment analysis revealed that pathways such as ‘ubiquitin-mediated proteolysis’, ‘sulfur metabolism’ and ‘regulation of actin cytoskeleton’ were associated with the target mRNAs of miR-584. NF-κB is a critical transcription factor for the maximal expression of numerous cytokines that are involved in the pathogenesis of inflammatory diseases, such as ARDS and sepsis syndrome. NF-κB activation involves the phosphorylation, ubiquitination and proteolysis of IκB (40). There is also experimental evidence that the actin cytoskeleton has an important role in the regulation of NF-κB activation and inflammatory events in intestinal epithelial cells (41). Numerous studies have proven that sulphides directly or indirectly affect the NF-κB signalling pathway, but they focused on a specific sulphide, not the entire sulfur metabolism system (42-44).

The enrichment analysis of miR-584 target genes is basically consistent with previous experiments.
Pathways such as ‘tuberculosis’, ‘toxoplasmosis’, ‘TLR signaling pathway’ and ‘NF-κB signaling pathway’ were associated with the target mRNAs of miR-146a. The TLR family acts as a primary sensor of innate immunity and all TLR signalling pathways culminate with the activation of the transcription factor NF-κB (45). Numerous studies have proven that miR-146a is closely related to inflammation (46-48). There is also considerable evidence that miR-146a is closely linked to lung diseases, including ARDS (49-51). The results of the target gene enrichment in the present study are consistent with previous results.

One of the predicted target genes of miR-146a, GDNF, belongs to the GF family and the target gene of miR-584, RAB23, belongs to the Ras family; both of them participate in the MAPK signaling pathway. miR, microRNA.
protein in the nuclei in lung cancer tissues by immunohistochemistry. Furthermore, the dysregulation of RAB23 may affect the NF-κB signalling pathway (55). The predictions of the present study are consistent with these findings. A limitation of the present study is the focus on high-throughput analysis and the related miRNA-mRNA network, GO analysis and KEGG analysis based on the predicted targeted genes. Further research on miRNA functions will be performed in future studies with the aim of obtaining additional evidence to corroborate the bioinformatics predictions.

In conclusion, the results of the present study suggested that miRNA-584 and miR-146a may be involved in the occurrence and development of inflammation in ARDS by affecting macrophages, and NF-κB may have an important role in this process. These molecules may be promising therapeutic targets for patients with ARDS and further studies are required to explore the precise mechanisms of ARDS.

Overall, it was revealed that miR-584, miR-146a and miR-122 have a certain association with ARDS and may be potential therapeutic targets. However, certain limitations of the present study should also be acknowledged. Of note, the results were only based on 21 serum samples from patients with ARDS. There may be certain false-positives and further verification is required. Future research on these targets is required to validate the functions of the identified miRNAs in ARDS and provide a more comprehensive understanding of the underlying mechanisms.

Acknowledgements

Not applicable.

Funding

This work was supported by grants from the Department of Health of Zhejiang Province (grant no. 2019322603) and the Hangzhou Science and Technology Bureau (grant no. 20191223B75).

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Authors' contributions

SZ and YH made substantial contributions to the conception or design of the study and drafting the manuscript or revising it critically for important intellectual content. HL, JX, QW, YZ, XZ and YY collected, analysed or interpreted data. XD edited and critically revised the manuscript. KZ proposed the experimental idea and participated in the design of the experiment. XD is the main designer of the experiment specifically performing the experiments, and data collection. KZ ensured that questions relating to the accuracy or completeness of any part of the work are properly investigated and resolved. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

The study protocol was approved by the Human Ethics Review Committee at XiXi Hospital of Hangzhou and Zhejiang Sci-Tech University (Hangzhou, China). All participants provided written informed consent prior to enrolment.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

